Amide solvent protection analysis demonstrates that amyloid-β(1–40) and amyloid-β(1–42) form different fibrillar structures under identical conditions
نویسندگان
چکیده
AD (Alzheimer’s disease) is a neurodegenerative disorder characterized by self-assembly and amyloid formation of the 39–43 residue long Aβ (amyloid-β)-peptide. The most abundant species, Aβ(1–40) and Aβ(1–42), are both present within senile plaques, but Aβ(1–42) peptides are considerably more prone to selfaggregation and are also essential for the development of AD. To understand the molecular and pathological mechanisms behind AD, a detailed knowledge of the amyloid structures of Aβpeptides is vital. In the present study we have used quenched hydrogen/deuterium-exchange NMR experiments to probe the structure of Aβ(1–40) fibrils. The fibrils were prepared and analysed identically as in our previous study on Aβ(1–42) fibrils, allowing a direct comparison of the two fibrillar structures. The solvent protection pattern of Aβ(1–40) fibrils revealed two wellprotected regions, consistent with a structural arrangement of two β-strands connected with a bend. This protection pattern partly resembles the pattern found in Aβ(1–42) fibrils, but the Aβ(1–40) fibrils display a significantly increased protection for the N-terminal residues Phe–His, suggesting that additional secondary structure is formed in this region. In contrast, the C-terminal residues Gly–Val show a reduced protection that suggests a loss of secondary structure in this region and an altered filament assembly. The differences between the present study and other similar investigations suggest that subtle variations in fibril-preparation conditions may significantly affect the fibrillar architecture.
منابع مشابه
Nanomaterials and Nanotechnology Specific Binding of Alzheimer’s A Peptide Fibrils to Single-Walled Carbon Nanotubes
Amyloids constitute a class of protein and protein fragments believed to be involved in the pathologies associated with Alzheimer’s, Parkinson’s and Creutzfeldt‐ Jakob diseases. These proteins can self‐assemble into unique fibrillar structures that are resistant to normal protein degradation. Interesting recent developments in the study of amyloid fibrils demonstrate that they ...
متن کاملIn situ fibrillizing amyloid-beta 1-42 induces neurite degeneration and apoptosis of differentiated SH-SY5Y cells
The progression of Alzheimer's disease is causatively linked to the accumulation of amyloid-β aggregates in the brain, however, it is not clear how the amyloid aggregates initiate the death of neuronal cells. The in vitro toxic effects of amyloid peptides are most commonly examined using the human neuroblastoma derived SH-SY5Y cell line and here we show that differentiated neuron-like SH-SY5Y c...
متن کاملAmide Proton Solvent Protection in Amylin Fibrils Probed by Quenched Hydrogen Exchange NMR
Amylin is an endocrine hormone that accumulates in amyloid plaques in patients with advanced type 2 diabetes. The amyloid plaques have been implicated in the destruction of pancreatic β-cells, which synthesize amylin and insulin. To better characterize the secondary structure of amylin in amyloid fibrils we assigned the NMR spectrum of the unfolded state in 95% DMSO and used a quenched hydrogen...
متن کاملToxic fibrillar oligomers of amyloid-β have cross-β structure.
Although amyloid fibers are found in neurodegenerative diseases, evidence points to soluble oligomers of amyloid-forming proteins as the cytotoxic species. Here, we establish that our preparation of toxic amyloid-β(1-42) (Abeta42) fibrillar oligomers (TABFOs) shares with mature amyloid fibrils the cross-β structure, in which adjacent β-sheets adhere by interpenetration of protein side chains. W...
متن کاملEnhanced Aβ1–40 Production in Endothelial Cells Stimulated with Fibrillar Aβ1–42
Amyloid accumulation in the brain of Alzheimer's patients results from altered processing of the 39- to 43-amino acid amyloid β protein (Aβ). The mechanisms for the elevated amyloid (Aβ(1-42)) are considered to be over-expression of the amyloid precursor protein (APP), enhanced cleavage of APP to Aβ, and decreased clearance of Aβ from the central nervous system (CNS). We report herein studies o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007